
Learning Goals: Taylor Series and McLaurin series

• Definition of a power series expansion of a function at a.

• Learn to calculate the Taylor series expansion of a function at a.

• Know that if a function has a power series expansion at a, then that power series must be the
Taylor series expansion at a.

• Be aware that the Taylor series expansion of a function f(x) at a does not always sum to f(x) in
an interval around a and know what is involved in checking whether it does or not.

• Remainder Theorem: Know how to get an upper bound for the remainder.

• Know the power series expansions for sin(x), cos(x) and (1 + x)k and be familiar with how they
were derived.

• Become familiar with how to apply previously learned methods to these new power series: i.e.
methods such as substitution, integration, differentiation, limits, polynomial approximation.
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Taylor Series and McLaurin series: Stewart Section 11.10

We have seen already that many functions have a power series representation on part of their domain.
For example

function Power series Repesentation Interval

1

1− x

∞∑
n=0

xn −1 < x < 1

1

1 + xk

∞∑
n=0

(−1)nxkn −1 < x < 1

ln(1 + x)
∞∑
n=0

(−1)n
xn+1

n+ 1
−1 < x ≤ 1

arctan(x)
∞∑
n=0

(−1)n
x2n+1

2n+ 1
−1

?
< x

?
< 1

ex
∞∑
n=0

xn

n!
−∞ < x <∞

Now that you are comfortable with the idea of a power series representation for a function, you may
be wondering if such a power series representation is unique and is there a systematic way of finding
a power series representation for a function. We will give answers to both of these questions for nice
functions (functions with infinitely many derivatives) below. First we introduce a new definition.

Definition We say that f(x) has a power series expansion at a if

f(x) =
∞∑
n=0

cn(x− a)n for all x such that |x− a| < R

for some R > 0

Note f(x) has a power series expansion at 0 if

f(x) =
∞∑
n=0

cnx
n for all x such that |x| < R

for some R > 0.

Example We see from our table above that f(x) =
1

1− x
, g(x) = ln(1 +x) and h(x) = tan−1 x all have

powers series expansions at a = 0. We are curious to know if these power series expansions around 0
are unique and if they have power series expansions around other values of a.

We can settle the uniqueness question relatively easily by comparing derivatives at a. Also by thinking
about derivatives of power series, we will see that in order for a function to have a power series expansion
at a, the function must have infinitely many derivatives at a. We will develop the tools we need below
to check when the existence of infinitely many derivatives at a is enough to guarantee a power series
expansion at a. In particular we will answer the following questions:
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• Q1. If a function f(x) has a power series expansion at a, can we tell what that power series
expansion is?

• Q2. For which values of x do the values of f(x) and the sum of the power series expansion
coincide?

Taylor Series

Definition If f(x) is a function with infinitely many derivatives at a, the Taylor Series of the
function f(x) at/about a is the power series

T (x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · ·

If a = 0 this series is called the McLaurin Series of the function f :

∞∑
n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 + · · ·

Note: If the Taylor series of f exists and converges in some open interval around a, then it has
infinitely many derivitives at a and the derivatives of Taylor series of f match the derivatives of f
at a.

Justification: If T (x) is defined in an open interval around a, then it is differentiable in that interval
as already stated in a Theorem on page 7 of Lecture C. The Taylor series of f at a is given by

T (x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · · ,

Furthermore, every derivative of T (x) at a equals the corresponding derivative of f(x) at a.

T ′(x) = 0 + f ′(a) +
2f (2)(a)

2!
(x− a) +

3f (3)(a)

3!
(x− a)2 + . . .

T ′′(x) = 0 + 0 +
2!f (2)(a)

2!
+

3 · 2 · f (3)(a)

3!
(x− a) + . . .

T (3)(x) = 0 + 0 + 0 +
3!f (3)(a)

3!
+ . . . etc....

So
T (a) = f(a) + 0 + 0 + · · · = f(a)

T ′(a) = f ′(a) + 0 + 0 + · · · = f ′(a)

T ′′(a) =
2!f (2)(a)

2!
+ 0 + 0 + · · · = f (2)(a)

T (3)(a) =
3!f (3)(a)

3!
+ 0 + · · · = f (3)(a)
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Example Find the McLaurin Series of the function f(x) = sin(x). Find the radius of convergence of
this series.

Example Find the McLaurin Series of the function f(x) = cos x. Find the radius of convergence of
this series.

Example Find the Taylor series expansion of the function f(x) = ex at a = 1. Find the radius of
convergence of this series.
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Answer to Q1

The following theorem answers our first question and shows us that a power series expansion for a
function f(x) around a is unique if it exists.

Theorem If f has a power series expansion at a, that is if

f(x) =
∞∑
n=0

cn(x− a)n for all x such that |x− a| < R

for some R > 0, then that power series is the Taylor series of f at a. We must have

cn =
f (n)(a)

n!
and f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n

for all x such that |x− a| < R.

If a = 0 the series in question is the McLaurin series of f .

Example This result is saying that if f(x) = sin(x) has a power series expansion at 0, then that
power series expansion must be the McLaurin series of sin(x) which is

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− · · ·

However the result is NOT saying that this series sums to sin(x) in an interval around zero. For that
we need Taylor’s theorem on the remainder below.

Example Recall that we already have a power series expansion for f(x) = ex at a = 0, in fact

ex =
∞∑
n=0

xn

n!
, −∞ < x <∞

The above theorem says that this series must be the Taylor series of f(x) at 0 (McLaurin Series), that
is

fn(0) = 1 for all n.

(Of course this is easy to verify.)

Example The result also says that if f(x) = ex has a power series expansion at 1, then that power
series expansion must be

e+ e(x− 1) +
e(x− 1)2

2!
+
e(x− 1)3

3!
+ · · · =

∞∑
n=0

e(x− 1)n

n!

since, as we showed above, this is the Taylor series of f(x) at a = 1.
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Q2: When does f(x) =
∑∞

n=0
f (n)(a)

n!
(x− a)n ?

Finding the values of x for which the Taylor series of a function f(x) about x = a converges to f(x).

For any value of x, the Taylor series of the function f(x) about x = a converges to f(x) when the partial
sums of the series (Tn(x) below) converge to f(x) .

Definition We let
Rn(x) = f(x)− Tn(x),

where

Tn(x) = f(a) +
f ′(a)

1!
(x− a) +

f (2)(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n.

Tn(x) given above is called the nth Taylor polynomial of f at a and Rn(x) is called the
remainder of the Taylor series.

Theorem Let f(x), Tn(x) and Rn(x) be as above. If

lim
n→∞

Rn(x) = 0 for |x− a| < R,

then f is equal to the sum of its Taylor series on the interval |x− a| < R.

To help us determine lim
n→∞

Rn(x), we have the following inequality:

Taylor’s Theorem/ Inequality If |f (n+1)(x)| ≤M for |x− a| ≤ d then the remainder Rn(x) of
the Taylor Series satisfies the inequality

|Rn(x)| ≤ M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.

Example: Taylor’s Inequality applied to sinx. If f(x) = sinx, then for any n, f (n+1)(x) is either
± sinx or ± cosx. In either case |f (n+1)(x)| ≤ 1 for all values of x. Therefore, with M = 1 and a = 0
and d any number, Taylor’s inequality tells us that |Rn(x)| ≤ 1

(n+1)!
|x|n+1 for all |x| ≤ d.

Example Prove that sinx is equal to the sum of its McLaurin series for all x, that is, show that

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

for all x.

(i) Here a = 0. For any given value of d, use Taylor’s inequality to find an upper bound for the absolute
value of the remainder |Rn(x)| for all values of x for which |x| < d.

6



(ii) Use the very important limit that we derived in the last lecture, namely lim
n→∞

|x|n

n!
= 0 for all values

of x for which |x| < d, to show that lim
n→∞

Rn(x) = 0 and thus

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

(iii) now we can choose d to be as big as we like, so our result holds for all values of x. FYI : Although
the value of d does not play a large role in this demonstration, it often turns out that our expression
for |Rn(x)| is a function of d and the fact that it is a fixed constant often helps us show that the limit
of the remainder is 0.

Example Find the sum of the series
∞∑
n=0

(−1)n
π2n+1

22n+1(2n+ 1)!
.

Example Prove that cosx is equal to the sum of its McLaurin series for all x, that is, show that

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

for all x. (Although you can use Taylor’s theorem here, you can use the power series expansion of sin(x)
from above along with differentiation of power series to show this result.)

Example use power series to find the limit

lim
x→0

cos(x5)− 1

x10

(This is a long computation if you use L’Hopital’s rule).
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Binomial Series

Example What is the McLaurin series for the function f(x) =
√

1 + x = (1 + x)1/2?

f(x) = (x+1)1/2, f ′(x) =
1

2
(x+1)−1/2, f ′′(x) =

1

2
(
−1

2
)(1+x)−3/2, f (3)(x) =

1

2
(
−1

2
)(
−3

2
)(1+x)−5/2

f(0) = 1, f ′(0) =
1

2
, f ′′(0) =

1

2
(
−1

2
), f (3)(0) =

1

2
(
−1

2
)(
−3

2
)

f (n)(0) =
1

2
(
−1

2
)(
−3

2
) . . . (

1

2
− (n− 1)).

f (n)(0)

n!
=

1
2
(−1

2
)(−3

2
) . . . (1

2
− (n− 1))

n!
=

(
1
2

n

)
.

If we define

(
1
2

n

)
to be

1
2
(−1

2
)(−3

2
) . . . (1

2
− (n− 1))

n!
, we get

(1 + x)1/2 =
∞∑
n=0

(
1
2

n

)
xn.

Definition: Generalized Binomial Coefficients: For any real number k and any integer n ≥ 1,
let (

k

n

)
=
k(k − 1)(k − 2) · · · (k − (n− 1))

n!
.

We also define

(
k

0

)
= 1.

Note that this is the binomial coefficient, when k is a positive integer and in that case

(
k

n

)
= 0 if

n > k.

The above example is just a special case of the following theorem with k = 1/2:

Theorem : Binomial series If k is any real number and |x| < 1, then

(1 + x)k =
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · ·

Note This is just the binomial theorem if k is a positive integer. In this case the series on the right is
just a polynomial of degree k.

Click on the blue link to see a proof of the above Theorem.

Example Write g(x) =
cosx

(1 + x)3
as a product of two power series centered at 0. Use the first few

terms of each to get a polynomial of degree 3 which approximates g(x) near zero.
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Example (a) Use the binomial expansion and substitution to find a power series expansion for

1√
1− x2

at 0.

(b) Use the fact that

sin−1 x =

∫
1√

1− x2
dx

to find a power series expansion for sin−1 x at 0.

We can now update our table to include our new functions

function Power series Repesentation Interval

1

1− x

∞∑
n=0

xn −1 < x < 1

1

1 + xk

∞∑
n=0

(−1)nxkn −1 < x < 1

ln(1 + x)
∞∑
n=0

(−1)n
xn+1

n+ 1
−1 < x < 1

arctan(x)
∞∑
n=0

(−1)n
x2n+1

2n+ 1
−1

?
< x

?
< 1

ex
∞∑
n=0

xn

n!
−∞ < x <∞

sin(x)
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
−∞ < x <∞

cos(x)
∞∑
n=0

(−1)n
x2n

(2n)!
−∞ < x <∞

(1 + x)k
∞∑
n=0

(
k

n

)
xn −1

?
< x

?
< 1
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An Example where f(x) = McL series only at x = 0, but the McL series converges for all x
Example The function

f(x) =

 e−1/x
2

x 6= 0

0 x = 0

turns out to have infinitely many derivatives at a = 0 and hence has a McLaurin series

0 + 0x+ 0x2 + · · · = 0 for all values of x.

So we see that the McLaurin series converges here for all values of x, but its sum does not equal the
value of f(x) for any x other than 0, because e−1/x

2
> 0 for all x 6= 0. In the graph below, the series is

shown in red and f(x) in blue.

-4 -2 2 4

-1.0

-0.5

0.5

1.0

1.5

2.0
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Extras

Theorem : Binomial series If k is any real number and |x| < 1, then

(1 + x)k =
∞∑
n=0

(
k

n

)
xn = 1 + kx+

k(k − 1)

2!
x2 +

k(k − 1)(k − 2)

3!
x3 + · · ·

Note This is just the binomial theorem if k is a positive integer. In this case the series on the right is
just a polynomial of degree k.

Identity The following identity will be used in the proof of the theorem:

n

(
k

n

)
+ (n− 1)

(
k

n− 1

)
= k

(
k

n− 1

)
when n ≥ 1.

Proof For n ≥ 1, we have

n

(
k

n

)
+ (n− 1)

(
k

n− 1

)
= n · k(k − 1)(k − 2) · · · (k − (n− 1))

n!
+ (n− 1) · k(k − 1)(k − 2) · · · (k − (n− 2))

(n− 1)!

=
k(k − 1)(k − 2) · · · (k − (n− 1))

(n− 1)!
+
k(k − 1)(k − 2) · · · (k − (n− 2))

(n− 2)!

=
k(k − 1)(k − 2) · · · (k − (n− 2))(k − (n− 1)) + (n− 1)k(k − 1)(k − 2) · · · (k − (n− 2))

(n− 1)!

=
k(k − 1)(k − 2) · · · (k − (n− 2))(k − (n− 1) + (n− 1))

(n− 1)!

= k · k(k − 1)(k − 2) · · · (k − (n− 2))

(n− 1)!
= k

(
k

n− 1

)
proof We see that the series on the right hand side above is the Taylor series for (1 + x)k in the same
way as in the example above with k = 1/2. We can find the radius of convergence of the series on the
right using the ratio test:

lim
n→∞

∣∣∣∣ k(k − 1)(k − 2) · · · (k − n)xn+1n!

k(k − 1)(k − 2) · · · (k − (n− 1))xn(n+ 1)!

∣∣∣∣ = lim
n→∞

∣∣∣∣(k − n)x

(n+ 1)

∣∣∣∣ = |x|.

Thus our power series converges for |x| < 1 and the radius of convergence is R = 1.

To prove that this series on the right hand side above converges to the function (1 + x)k by applying
Taylor’s theorem to the remainder is a little tricky. We can prove this in a more elegant way using
differential equations. You can easily check that (1 + x)k is the unique solution to the initial value
problem for the differential equation

(1 + x)y′ = ky, y(0) = 1

either by plugging the function into the equation or by solving this linear equation.
Now we show that the power series on the right hand side is also a solution. If satisfies the initial
condition since

∞∑
n=0

(
k

n

)
0n =

(
k

0

)
= 1.
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If y =
∞∑
n=0

(
k

n

)
xn, then y′ =

∞∑
n=1

n

(
k

n

)
xn−1 and

(1 + x)y′ = y′ + xy′ =
∞∑
n=1

n

(
k

n

)
xn−1 +

∞∑
n=1

n

(
k

n

)
xn

=
∞∑
n=1

n

(
k

n

)
xn−1 +

∞∑
n=2

(n− 1)

(
k

n− 1

)
xn−1

= k +
∞∑
n=2

k

(
k

n− 1

)
xn−1 = k(1 +

∞∑
n=1

(
k

n

)
xn) = k

∞∑
n=0

(
k

n

)
xn = ky

Thus the power series
∞∑
n=0

(
k

n

)
xn and the function (1 + x)k are solutions to the initial value problem

and must be equal.

Back To Lecture
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